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Solution 3

1. A function on [a, b] is called Hélder continuous at = € [a, b] if there are a € (0,1), L and §
such that |f(y) — f(x)| < L|ly — x| for all y € [a,b], |y — x| < 0. Prove that Theorem 1.5
holds when “Lipschitz continuous” is replaced by “Holder continuous”.

Solution Just like the Lipschitz case, the only difference is the way to treat the term
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By the Holder condition, we have, for z, |z| <, § < min{dp,d:1} ,
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Now, it suffices to choose § such that

4L €

<5 0 < min{dp, 1} ,

to finish the job.
2. Let f be a function defined on (a,b) and z¢ € (a,b).

(a) Show that f is Lipschitz continuous at xz if its left and right derivatives exist at zg.

(b) Construct a function Lipschitz continuous at xg whose one sided derivatives do not
exist.

Solution. (a) Let a = f! (x¢). For e =1 > 0, there exists d; such that

flxz+2) = f(z)

z

—a| <1,

for 0 < z < 61. It follows that
[f(z+2) = f(@)] < |f(z+2) = f(z) — az| + |oz| < (1+ |al)lz] .
Similarly,
[f(x+2) = f@)| < (AL +lal)lz], 2z € (=02,0).
We conclude that |f(z +2) — f(z)] < (14+6)|z], =z € (=4,d), 6 =min{di,da}.

(b) The function f(z) = zsind (z # 0) and = 0 at z = 0. It is Lipschitz continuous at
xo = 0 with L = 1 but both one-sided derivatives do not exist.

3. Let f be a function defined on (a,b] which is integrable on [c,b] for all ¢ € (a,b). It is
called improperly integrable over (a, b] if

b
chtlzl""/c |f|
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also exists and we define the improper integral of f over (a,b] to be
=1
[r=pm [s

(a) Show that if f is integrable on [a, ], its improper integral also exists and is equal to
it usual integral.

exists. When this happens,

(b) Show that Riemann-Lebesgue Lemma holds for improperly integrable functions.

Solution. (a) Using
[ < e-apt M=swls.
for e > 0,
b b c
1= 18] = [11< - <

for all ¢, |c — a| < /M. Therefore,

i [Cn= [,

(b) For € > 0, fix ¢ € (a,b) such that

[ i<erz.

The function f is integrable on [c, b] and Riemann-Lebesgue Lemma applies to get

)einxdm
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for some ng. It follows that
z)e™dy

r)e™dr| <e, Vn>ng.

< [+

4. Optional. Show that

cos 2x n cos 3x
2 3

—log ’2sin§‘ ~ cosz +

Suggestion. I leave it to you to verify this function is 27-periodic and improperly inte-
grable. The calculation of ag is tricky, involving the definite integral 1= foﬂ/ 2 log sin tdt.
To evaluate it use sint = 2sint/2cost/2 and eventually show I = —7 log 2.

Solution. I leave out the verification of periodicity and improper integrability. This is
an even function, so its Fourier series is a cosine series. Let

T x T x
Tay = / log (2 sin 5) dr =mlog2+Y, Y = / log sin §dac.
0 0
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‘We have

/2
Y = 2/ log sin tdt
0

= 2 7T/21 2 i i d
J— 3 — — t
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7'1'/2 t 7T/2 t
= 7rlog2+2/ logsindt+2/ log cos —dt
0 2 0 2
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71'/2 t t
= 7rlog2+2/ log sin dt+2/ log sin —dt
0 2 s 2

= mwlog2+2Y,

/2

so Y = —wlog?2. It follows that ag = 0. The calculations for a, make use of by parts to

get

1 (7 sinnxcos(z/2)
an=— [ —————dx
nmw Jo sin(z/2)

first, then by
mncos s = o (sin(n+ e+ sin(n - )
sinnzcos 5 = o | sin(n + 5)z +sin(n — 7))z
and finally use Property 3 of the Dirichlet kernel.

5. Let ay,, b, be the Fourier coefficients of some f € Ra;.

(a) Show that for each r € [0, 1), the trigonometric series given by

[e.°]
ap + E " (ap cos nz + by, sinnx)
k=1

is uniformly convergent to some function in Cs,. Denote this function by f,.(x).
(b) Show that

1 ™
fla) =5 | P+ 2
™ —T
where the Poisson kernel P, is given by

_ 1—1r2
 1—2rcosz—+1r2’

P (z)

(c) Let f be continuous at z. Show that lim, 1 f(z) = f(z).
The treatment is parallel to that for the Dirichlet kernel (the parameter n is now replaced
by r), but differs at the final step; we do not need Lipschitz continuity. Think about it.

Solution. Look up [SS]. We don’t need Lipschitz continuity because Poisson kernel is
positive, so the analog of Property IV of the Dirichlet kernel does not hold, which is good
news.

6. (a) Can you find a cosine series which converges uniformly to the sine function on [0, 7]?
If yes, find one.

(b) Is the series in (a) unique?
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(¢) Can you find a cosine series which converges pointwisely to the sine function on [—a, 7]
where a is a number in (0,7)?

Solution. (a) Yes, extend the sine function on [0,7] to |sinz|, an even, 2w-periodic
function. Since it is continuous, piecewise C!, its cosine series converges uniformly to this
extended function. In particular, this cosine series converges uniformly to sinz on [0, 7].
(b) Yes, there is only one way to extend sin x as an even function. (c) No, can’t have even
extension. (When a function is the pointwise limit of an even function, it must be even.)

7. Let f be an integrable function on [—m,7]. Show that for each ¢ > 0, there exists a
trigonometric polynomial p satisfying p < f on [—m, 7] and

/ilf—p|<€~

Solution. Given ¢ > 0, we can find a continuous function g + 1 < f satisfying

b
€
/a|f—9<4

for a small e; > 0. (g comes from modifying a step function constructed using a Dar-
bourx lower sum.) Then we find a trigonometric polynomial ¢ satisfying |g(z) — ¢(x)| <

g q 1'

The function p = ¢ + min{e;/2,¢/(4(b — a)} satisfies our requirement.

Note. Weierstrass Theorem asserts every continuous function can be approximated by
polynomials in [a, b]. Here it is shown that every integrable function can be approximated
by polynomials in integral sense (that is, in average sense).

8. Optional. Show that there is a countable subset of C[a,b] such that for each f € Cla,b],
there is some £ > 0 such that ||f — g||cc < € for some ¢ in this set. Suggestion: Take this
set to be the collection of all polynomials whose coeflicients are rational numbers.

Solution. Let Py the collection of all polynomials of the form p(z) = ap+ajz+- - -+anz"”
where aj,j = 0,--- , N are rational numbers. The map p — (ao,a1,--- ,an) is a one-to-
one correspondence between Py and Q, which is countable. As the countable union of
countable sets is again countable, P = UX_, Py is also countable. Now, by Weierstrass
theorem, for each f € [a,b] and € > 0, there exists a polynomial ¢ (with real coefficients)
such that ||f — ¢|lec < £/2. We may approximate ¢ by a polynomial p from P such that

g — plloo- It follows that || f — plloc < [|f — dlloc + [|¢ — Plleo < €.

9. Let f be continuous on [a,b] X [¢,d]. Show that for each € > 0, there exists a polynomial
p = p(z,y) so that
Hf —pHOO <e, in[a,b] X [c,d].

In fact, this result holds in arbitrary dimension.

Solution. Just like we approximate a continuous function by continuous piecewise linear
function in the one dimensional case, WLOG we may assume f(z,y) is doubly 27-periodic,
uniformly Lipschitz continuous in [—7,7]2. For every ¢ > 0, we can find an N such that
for all y

N
|f(z,y) — Z(ak(y) coskx + by (y)sinkz| <e, V. (1)
k=1
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(See the last paragraph.) From the expression

1 ™
() = — | f(e,y)coshadz

—Tr

we see that each aj is in Cy,. By Weierstrass Approximation Theorem, we can find
polynomials pg(z) such that |ax(x) — px(z)| < e/N for all z, and g, for by similarly. It
follows that

Mz

) cos kx + q(x) sin kx)|
k:l

IN

N
‘f - Z(ak (z) cos kx + by () sin kx)
k=1

N N
Z ap(x) cos kx + by (x) sin kx) Z pr(x) cos kx + qi(z) sin kx)
k=1 =1

€
< 2N X —

€+ XN
= 3e.

Finally, we approximate cos kx and sin kxz by polynomials in x to complete the job.

We justify (1) by a compactness argument. For each fixed y, the function x — f(z,y) is
uniformly Lipschitz continuous. For € > 0, there exists some natural number N, depending
on y such that

Ny

|f(x,y) — Z(ak(y) coskx + by (y) sinkx| <e, Vx.
k=1

By continuity, there is some interval (y — d,, y + d,) so that

Ny
|f(z,2) — Z(ak(z) coskx + by(z)sinkx| <e, Vz, and z € (y —dy,y +Jy) .
k=1

All these intervals {(y — dy,y + dy)},y € [—m, 7], form an open covering of [—m,7]. By
Open Covering Theorem (I taught it in MATH2050 many years ago. Supposedly it is still
covered in this course ), we can find a finite subcover {(yi — 0y, ,yx +0y,)}, k=1,---, M.
Then (1) holds by taking N = max{Ny,,---, Ny, }.



